91. Molecular Polarisability. Dipole Moments, Molar Kerr Constants and Apparent Conformations of Certain α-Substituted Carbonyl Compounds.

By M. J. ARONEY, R. J. W. LE FÈVRE, and A. N. SINGH.

Dipole moments and molar Kerr constants are reported for chloro- and bromo-acetone, acetyl and chloroacetyl chlorides, and ethyl methyl ketone as solutes in carbon tetrachloride and for propionaldehyde as solute in benzene. The observations are interpreted as indicating that in the experimental environment (a) chloro- and bromo-acetone exist mainly as the gauche form; the ratio gauche: cis-halogen-oxygen equals ca. 4 for chloroacetone and ca. 5 for bromoacetone; (b) the gauche conformation of chloroacetone is defined by $\phi = ca$. 130° and for bromoacetone by $\phi = ca$. 120° on the basis that $\phi = 0^{\circ}$ for the cis-isomer; (c) chloroacetyl chloride does not exist exclusively as the more stable cis-form; (d) propionaldehyde and ethyl methyl ketone are present predominantly as a gauche type conformer in which the C-C-Me plane is approximately perpendicular to that of the trigonal carbon valencies.

THIS Paper deals with the interpretation of the polarities and electric birefringences of certain α -substituted carbonyl compounds, examined as solutes in non-polar media, in terms of their apparent molecular conformations. Observations and results are summarised in Tables 1 and 2.

EXPERIMENTAL

Materials and Apparatus.—The solutes were prepared and/or purified immediately before use to give: chloroacetone, b. p. 119°; bromoacetone, b. p. 30°/ca. 7 mm.; acetyl chloride,

Incremental Kerr effects, refractive indexes, dielectric constants, and densities of solutions at 25° .

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Chlorod	acetone in CCI	4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10^5 w_2$ $10^7 \Delta B$	810 0·031	992 0·040	$\begin{array}{c} 1342 \\ 0.050 \\ \overline{} \end{array}$	2165 0·083	$2568 \\ 0.099$	$2900 \\ 0.117$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-10^{-}\Delta n$	4 2·3157	0 9.3353	1 9.3758	11 9.4797	13 9.5999	14 9.5644
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	d_1^{25}	1.57943	1.57822	1.57621	1.57112	1.56859	1.56646
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•	whence $\Delta \epsilon =$	$\Sigma 10^7 \Delta B / \Sigma w_2$ $10.6 w_2 + 35.9$	$= \frac{3.90}{9w_2^2}; \Sigma \Delta n$	$\Sigma w_2 = -0.050$ $w_2 = -0.625$);	1 00010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Bromod	acetone in CCI	4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$10^5 w_2$	780	1146	1685	2889	4601	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-10^{4}\Delta B$		0.013	0.018	0.034	0.053	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ε^{25}	2.2860	2.3138	2.3555	2.4526	3 2∙5991	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>d</i> ₄ ²⁵	1.58487	1.58510		1.58632	1.58765	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		whence $\Delta \mathbf{\epsilon} = 7.3$	$\frac{\Sigma 10^7 \Delta B / \Sigma w_2}{88w_2 + 15 \cdot 4w_2} =$	= $1 \cdot 14$; $\Sigma \Delta n/2^2$; $\Delta d = 0.04$	$\Sigma w_2 = -0.007$ $46w_2 + 0.485w_2^2$; 2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Acetyl c	hloride in CC	1,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$10^5 w_2$	1165	1767	2971	4554	4674	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$10^7 \Delta B$	0.012	0.020	0.034	0.051	0.057	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			whence $\Sigma 1$	$0^7 \Delta B / \Sigma w_2 =$	1.15		
$\begin{split} z^{25} & \dots & 2\cdot3008 2\cdot3486 2\cdot4859 d_4^{25} & \dots & 1\cdot57681 1\cdot57061 1\cdot55342 \\ & \text{whence } \Sigma\Delta \varepsilon / \Sigma w_2 = 14\cdot6 & \text{whence } \Sigma\Delta d / \Sigma w_2 = -0\cdot723 \\ & Chloroacetyl \ chloride \ in \ {\rm CCl}_4 \\ 10^5 w_2 & \dots & 3236 & 4079 & 4334 & 5120 & 5344 & 7600 & 10,447 \\ 10^7 \Delta B & 0\cdot037 & 0\cdot051 & 0\cdot051 & - & 0\cdot068 & 0\cdot098 & 0\cdot132 \\ & -10^4 \Delta n & & 7 & 9 & 9 & 11 & 11 & - & 21 \\ & \text{whence } \Sigma10^7 \Delta B / \Sigma w_2 = 1\cdot25; \Sigma\Delta n / \Sigma w_2 = -0\cdot021 \\ 10^5 w_2 & & 700 & 1205 & 1698 & 2185 & 2926 \\ z^{25} & & 2\cdot2848 & 2\cdot3276 & 2\cdot3701 & 2\cdot4150 & 2\cdot4810 \\ d_4^{25} & & 1\cdot58272 & 1\cdot58158 & 1\cdot58043 & 1\cdot57725 \\ & \text{whence } \Delta z = 8\cdot14w_2 + 19\cdot0w_2^2; \ \Sigma\Delta d / \Sigma w_2 = -0\cdot250 \\ & Propionaldehyde \ in \ C_6 H_6 \\ 10^5 w_2 & & 1693 & 2135 & 2277 & 2792 & 3128 \\ 10^7 \Delta B & 0\cdot130 & 0\cdot165 & 0\cdot185 & 0\cdot230 & 0\cdot236 \\ d_4^{25} & & 0\cdot87261 & 0\cdot87230 & 0\cdot87221 & 0\cdot87181 & 0\cdot87166 \\ & \text{whence } \Sigma10^7 \Delta B / \Sigma w_2 = 7\cdot87; \ \Sigma\Delta d / \Sigma w_2 = -0\cdot069 \\ 10^5 w_2 & & 723 & 863 & 1477 & 1797 & 2364 & 2653 \\ z^{25} & & 2\cdot3624 & 2\cdot3758 & 2\cdot4499 & 2\cdot4905 & 2\cdot5582 & 2\cdot5916 \\ & \text{whence } \Sigma\Delta n / \Sigma w_2 = -0\cdot145; \ \Sigma\Delta a / \Sigma w_2 = 12\cdot1 \\ \hline Ethyl \ methyl \ ketone \ in \ {\rm CCl}_4 \\ 10^6 w_2 & & 665 & 1005 & 1476 & 1943 & 2292 \\ 10^7 \Delta B & 0\cdot077 & 0\cdot123 & 0\cdot178 & 0\cdot236 & 0\cdot269 \\ -10^4 \Delta n & 10 & 16 & 22 & 30 & 35 \\ z^{25} & & 2\cdot3673 & 2\cdot4386 & 2\cdot5365 & 2\cdot6360 & 2\cdot7108 \\ d_4^{26} & & 1\cdot57444 & 1\cdot56919 & 1\cdot56205 & 1\cdot55492 & 1\cdot54977 \\ & \text{whence } \Sigma 10^7 \Delta B / \Sigma w_2 = 12\cdot1; \ \Sigma \Delta d / \Sigma w_2 = -0\cdot153; \\ \Sigma \Delta \varepsilon / \Sigma w_2 = 21\cdot1; \ \Sigma \Delta d / \Sigma w_2 = -1\cdot52 \\ \end{split}$	$10^5 w_2$	505	840 1767	$10^{5}w_{2}$		1076 191	2 4308
$\begin{tabular}{l lllllllllllllllllllllllllllllllllll$	ε ²⁵	2.3008 2	$\cdot 3486 2 \cdot 485$	9 d_4^{25}	1.	57681 1.570	61 1.55342
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	whence X	$\Sigma\Delta\varepsilon/\Sigma w_2 = 1$	$4 \cdot 6$		whence $\Sigma\Delta d$	$d/\Sigma w_2 = -0.7$	723
$\begin{array}{c} 10^5 w_2 & & 3236 & 4079 & 4334 & 5120 & 5344 & 7600 & 10,447 \\ 10^7 \Delta B & & 0.037 & 0.051 & 0.051 & - & 0.068 & 0.098 & 0.132 \\ -10^4 \Delta n & & 7 & 9 & 9 & 11 & 11 & - & 21 \\ & & whence \Sigma 10^7 \Delta B / \Sigma w_2 = 1.25; \ \Sigma \Delta n / \Sigma w_2 = -0.021 \\ \hline 10^5 w_2 & & 2.2848 & 2.3276 & 2.3701 & 2.4150 & 2.4810 \\ d_4^{25} & & 1.58272 & 1.58158 & 1.58043 & 1.57893 & 1.57725 \\ & & whence \Delta \varepsilon = 8.14 w_2 + 19.0 w_2^2; \ \Sigma \Delta d / \Sigma w_2 = -0.250 \\ \hline Propional dehyde in C_6 H_6 \\ \hline 10^5 w_2 & & 1693 & 2135 & 2277 & 2792 & 3128 \\ 10^7 \Delta B & & 0.165 & 0.185 & 0.230 & 0.236 \\ d_4^{25} & & 0.87261 & 0.87230 & 0.87221 & 0.87181 & 0.87166 \\ & whence \Sigma 10^7 \Delta B / \Sigma w_2 = 7.87; \ \Sigma \Delta d / \Sigma w_2 = -0.069 \\ \hline 10^5 w_2 & & 723 & 863 & 1477 & 1797 & 2364 & 2653 \\ -10^4 \Delta n & 10 & 12 & 22 & 26 & 34 & 39 \\ \varepsilon^5 & & 2.3624 & 2.3758 & 2.4499 & 2.4905 & 2.5582 & 2.5916 \\ & whence \Sigma \Delta n / \Sigma w_2 = -0.145; \ \Sigma \Delta \varepsilon / \Sigma w_2 = 12.1 \\ \hline Ethyl methyl ketone in CCl_4 \\ \hline 10^5 w_2 & & 665 & 1005 & 1476 & 1943 & 2292 \\ 10^7 \Delta B & & 0.077 & 0.123 & 0.178 & 0.236 & 0.269 \\ -10^4 \Delta n & & 10 & 16 & 22 & 30 & 35 \\ \varepsilon^{25} & & 2.3673 & 2.4386 & 2.5365 & 2.6360 & 2.7108 \\ d_4^{25} & & 10 & 16 & 622 & 30 & 35 \\ \varepsilon^{25} & & 2.3673 & 2.4386 & 2.5365 & 2.6360 & 2.7108 \\ d_4^{25} & & 10 & 16 & 22 & 30 & 35 \\ \varepsilon^{25} & & 2.3673 & 2.4386 & 2.5365 & 2.6360 & 2.7108 \\ d_4^{25} & & 1.57444 & 1.56919 & 1.56205 & 1.55492 & 1.54977 \\ & whence \Sigma 10^7 \Delta B / \Sigma w_2 = 12.0; \ \Sigma \Delta n / \Sigma w_2 = -0.153; \\ & \Sigma \Delta \varepsilon / \Sigma w_2 = 21.1; \ \Sigma \Delta d / \Sigma w_2 = -1.52 \\ \hline \end{array}$			Chlowagast	1 chlowide in	CC1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105m	2026		994 51	CCI ₄ DD 5944	7600	10 447
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10^{7} W_{2}$	3230 0.037	4079 4 0.051 0.	-051	- 0.068	0.098	0.132
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-10^4\Delta n$	7	9	9 11	1		21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		whence	$\Sigma 10^7 \Delta B / \Sigma w_2 =$	= 1.25 ; $\Sigma\Delta n_{l}$	$\Sigma w_2 = -0.021$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 ⁵ w	700	1205	1698	2185	2926	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ϵ^{25}	2.2848	2.3276	2.3701	2.4150	2.4810	
$\begin{array}{c} \text{whence } \Delta \varepsilon = 8 \cdot 14 w_2 + 19 \cdot 0 w_2^2; \ \Sigma \Delta d / \Sigma w_2 = -0 \cdot 250 \\ \hline Propionaldehyde \ in \ \mathbb{C}_6 \mathbb{H}_6 \\ 10^5 w_2 \ \dots \ 1693 \ 2135 \ 2277 \ 2792 \ 3128 \\ 10^7 \Delta B \ \dots \ 0 \cdot 130 \ 0 \cdot 165 \ 0 \cdot 185 \ 0 \cdot 230 \ 0 \cdot 236 \\ d_4^{25} \ \dots \ 0 \cdot 87261 \ 0 \cdot 87230 \ 0 \cdot 87221 \ 0 \cdot 87181 \ 0 \cdot 87166 \\ \hline \text{whence } \Sigma 10^7 \Delta B / \Sigma w_2 = 7 \cdot 87; \ \Sigma \Delta d / \Sigma w_2 = -0 \cdot 069 \\ \hline 10^5 w_2 \ \dots \ 723 \ 863 \ 1477 \ 1797 \ 2364 \ 2653 \\ -10^4 \Delta n \ \dots \ 10 \ 12 \ 22 \ 26 \ 34 \ 39 \\ \varepsilon^{25} \ \dots \ 2 \cdot 3624 \ 2 \cdot 3758 \ 2 \cdot 4499 \ 2 \cdot 4905 \ 2 \cdot 5582 \ 2 \cdot 5916 \\ \hline \text{whence } \Sigma \Delta n / \Sigma w_2 = -0 \cdot 145; \ \Sigma \Delta \varepsilon / \Sigma w_2 = 12 \cdot 1 \\ \hline Ethyl \ methyl \ hetone \ in \ CCl_4 \\ \hline 10^5 w_2 \ \dots \ 665 \ 1005 \ 1476 \ 1943 \ 2292 \\ 10^7 \Delta B \ \dots \ 0 \cdot 077 \ 0 \cdot 123 \ 0 \cdot 178 \ 0 \cdot 236 \ 0 \cdot 269 \\ -10^4 \Delta n \ \dots \ 10 \ 16 \ 22 \ 30 \ 35 \\ \varepsilon^{25} \ \dots \ 2 \cdot 3673 \ 2 \cdot 4386 \ 2 \cdot 5365 \ 2 \cdot 6360 \ 2 \cdot 7108 \\ d_4^{25} \ \dots \ 1 \cdot 57444 \ 1 \cdot 56919 \ 1 \cdot 56205 \ 1 \cdot 55492 \ 1 \cdot 54977 \\ \hline \text{whence } \Sigma 10^7 \Delta B / \Sigma w_2 \ = 12 \cdot 0; \ \Sigma \Delta n / \Sigma w_2 \ = -0 \cdot 153; \\ \Sigma \Delta \varepsilon / \Sigma w_2 \ = 21 \cdot 1; \ \Sigma \Delta d / \Sigma w_2 \ = -1 \cdot 52 \\ \end{array}$	d_4^{25}	1.58272	1.58158	1.58043	1.57893	1.57725	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		whence Δa	$\varepsilon = 8 \cdot 14w_2 + $	$19 \cdot 0w_2^2; \ \Sigma \Delta c$	$d/\Sigma w_2 = -0.25$	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Propiona	ldehyde in C ₆ 1	H ₆		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10^5 w_2$	1693	2135	2277	2792	3128	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10^{7}\Delta B$	0.130	0.165	0.185	0.230	0.236	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>a</i> ₄ ²³	0.87261	0.87230	0.87221	0.87181	0.87166	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		whence 2	$\Sigma 10^7 \Delta B / \Sigma w_2 =$	= 7.87; $\Sigma \Delta d/$	$\Sigma w_2 = -0.069$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10^5 w_2$	723	863	1477	1797	2364	2653
$\begin{split} \varepsilon^{25} \dots & 2\cdot 3624 2\cdot 3758 2\cdot 4499 2\cdot 4905 2\cdot 582 2\cdot 5916 \\ & \text{whence } \Sigma \Delta n / \Sigma w_2 = -0\cdot 145; \ \Sigma \Delta \varepsilon / \Sigma w_2 = 12\cdot 1 \\ & Ethyl \ methyl \ ketone \ in \ \text{CCl}_4 \\ 10^5 w_2 \ \dots & 665 \ 1005 \ 1476 \ 1943 \ 2292 \\ 10^7 \Delta B \ \dots & 0\cdot 077 \ 0\cdot 123 \ 0\cdot 178 \ 0\cdot 236 \ 0\cdot 269 \\ -10^4 \Delta n \ \dots & 10 \ 16 \ 22 \ 30 \ 35 \\ \varepsilon^{25} \dots & 2\cdot 3673 \ 2\cdot 4386 \ 2\cdot 5365 \ 2\cdot 6360 \ 2\cdot 7108 \\ d_4^{25} \ \dots & 1\cdot 57444 \ 1\cdot 56919 \ 1\cdot 56205 \ 1\cdot 55492 \ 1\cdot 54977 \\ & \text{whence } \Sigma 10^7 \Delta B / \Sigma w_2 = 12\cdot 0; \ \Sigma \Delta n / \Sigma w_2 = -0\cdot 153; \\ \Sigma \Delta \varepsilon / \Sigma w_2 = 21\cdot 1; \ \Sigma \Delta d / \Sigma w_2 = -1\cdot 52 \end{split}$	$-10^{4}\Delta n$	10	12	22	26	34	39
$ \begin{array}{c} \text{whence } \Sigma\Delta n/\Sigma w_2 = -0\cdot 145; \ \Sigma\Delta\varepsilon/\Sigma w_2 = 12\cdot 1 \\ \\ Ethyl \ methyl \ ketone \ in \ \text{CCl}_4 \\ \hline 10^5 w_2 \ \dots \dots \ 665 \ 1005 \ 1476 \ 1943 \ 2292 \\ 10^7 \Delta B \ \dots \ 0\cdot 077 \ 0\cdot 123 \ 0\cdot 178 \ 0\cdot 236 \ 0\cdot 269 \\ -10^4 \Delta n \ \dots \ 10 \ 16 \ 22 \ 30 \ 35 \\ \varepsilon^{25} \ \dots \ 2\cdot 3673 \ 2\cdot 4386 \ 2\cdot 5365 \ 2\cdot 6360 \ 2\cdot 7108 \\ d_4^{25} \ \dots \ 1\cdot 57444 \ 1\cdot 56919 \ 1\cdot 56205 \ 1\cdot 55492 \ 1\cdot 54977 \\ \\ \text{whence } \Sigma10^7 \Delta B/\Sigma w_2 = 12\cdot 0; \ \Sigma\Delta n/\Sigma w_2 = -0\cdot 153; \\ \Sigma\Delta\varepsilon/\Sigma w_2 = 21\cdot 1; \ \Sigma\Delta d/\Sigma w_2 = -1\cdot 52 \end{array}$	ε ²⁵	2.3624	2.3758	$2 \cdot 4499$	$2 \cdot 4905$	2.5582	2.5916
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		whence	$\sum \Delta n / \sum w_2 =$	-0.145 ; $\Sigma\Delta a$	$\epsilon/\Sigma w_2 = 12 \cdot 1$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ethyl methy	yl ketone in C	Cl ₄		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$10^{\circ}w_2$	665	1005	1476	1943	2292	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-10^{4}\Delta n$	10	0.123	0.178 29	0·230 30	35	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ε ²⁵	2.3673	$2 \cdot 4386$	2.5365	2.6360	2.7108	
whence $\Sigma 10^7 \Delta B / \Sigma w_2 = 12.0; \ \Sigma \Delta n / \Sigma w_2 = -0.153; \ \Sigma \Delta \varepsilon / \Sigma w_2 = 21.1; \ \Sigma \Delta d / \Sigma w_2 = -1.52$	d4 ²⁵	1.57444	1.56919	1.56205	1.55492	1.54977	
		whence Σ	$\Delta B / \Sigma w_2 = \Delta \varepsilon / \Sigma w_2 = 21 \cdot 1$; $\Sigma \Delta d / \Sigma w_2 =$	$Ew_2 = -0.153;$ = -1.52		

b. p. $51-52^{\circ}$; chloroacetyl chloride, b. p. $106-108^{\circ}$; propionaldehyde, b. p. 49° ; ethyl methyl ketone, b. p. 80° . Carbon tetrachloride and benzene, as solvents, were dried (CaCl₂ and Na, respectively) then fractionated. Symbols, headings, and methods of calculation used in

TABLE 2.

Polarisations, dipole moments, and molar Kerr constants from observations on solutions at 25° .

						∞P_{2}	$R_{\rm D}$		
Solute	Solvent	$\alpha \epsilon_1$	β	γ	δ	(c.c.)	(c.c.)	μD^*	$10^{12} \infty ({}_{ m m}K_2)$
Chloroacetone	CCl4	10.6	-0.394	-0.034	55.7	127.5	20.7	2.27	$36 \cdot 1$
Bromoacetone	,,	7.38	0.029	-0.002	16.3	131.4	22.7	$2 \cdot 29$	14.1
Acetyl chloride	,,	14.6	-0.456	-0.096 ‡	16.4	$142 \cdot 4$	16.2 †	2.48	$6 \cdot 5$
Chloroacetyl chloride	,,	8.14	-0.158	-0.014	-17.9	$121 \cdot 4$	21.7	2.20	-17.3
Propionaldehyde	C_6H_6	$12 \cdot 1$	-0.079	-0.092	$19 \cdot 2$	$153 \cdot 2$	16.2	2.58	64.6
Ethyl methyl ketone	CCl ₄	$21 \cdot 1$	-0.960	-0.102	171	186.5	20.7	2.84	88.2

* Calculated assuming $_{\rm D}P = 1.05 R_{\rm D}$. † Calculated from the bond refractions of Vogel, Cresswell, Jeffrey, and Leicester, J., 1952, 514. ‡ Calculated from $R_{\rm D} = 16.2$ c.c. and $\beta = -0.456$.

Tables 1 and 2 are explained in ref. 1, pp. 280–283. When $w_2 = 0$, the following values apply at 25° (and, where appropriate, for sodium-D light):

	$10^7 B_D$	$n_{\rm D}$	ε	d	$10^{14}(_{s}K_{1})$
CCl ₄	0.010	1.4575	$2 \cdot 2270$	1.58454	0.749
C ₆ H ₆	0.410	$1 \cdot 4973$	2.2725	0.87378	7.56

Previous Measurements.—The following dipole moments (in Debye units) have been recorded (solvent or state, and reference, given in brackets; B = benzene; D = dioxan; Hx = hexane; CT = carbon tetrachloride; CD = carbon disulphide; L = pure liquid; G = gaseous state):chloroacetone, 2.35 (Hx; 2), 2.38 (CT; 3), 2.1_{7} — 2.2_{4} (G; 4); bromoacetone, 2.38 (Hx; 2); acetyl chloride, 2.45 (B; 5), 2.40 (B; 6), 2.68 (G; 4); chloroacetyl chloride, 2.22 (B; 5), 2.06 (CD; 5), 2·2 (G; 4), 2·17 (CT; 7); propionaldehyde, 2·54 (B; 8), 2·73 (G; 9); ethyl methyl ketone, 2.79 (B; 10), 2.78 (B; 11), 3.2 (L; 12), 2.76 (B; 13), 2.82 (D; 13).

DISCUSSION

Chloroacetone and Bromoacetone.-It has been well established,3,14-17 mainly from spectroscopic evidence, that the simple α -halogenated ketones X·CH₂·CO·R exist in the liquid state as an equilibrium mixture of cis-halogen-oxygen and gauche forms—these are shown as (I) and (II), respectively. The more polar isomer (I) has a planar or nearplanar arrangement of the atoms X·C·C·O; (II) is generated from (I) by rotation of the CH₂X group through an angle ϕ , e.g., for chloroacetone (R = Me, X = Cl) the azimuthal angle is reported by Mizushima et al.³ to be ca. 150° . The relative stabilities of these conformations are determined by the electrostatic repulsion between the halogen and oxygen atoms on the one hand, and by the steric repulsion between the halogen and the alkyl group on the other. In the present work, we derive from the apparent polarities and electric birefringences of chloro- and bromo-acetone, examined as solutes in carbon tetrachloride, the position of the equilibrium (cis \implies gauche) for each of these molecules in this

¹ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem. (Australia), 1955, 5, 261.

² Mohler, Helv. Chim. Acta, 1938, 21, 67.

³ Mizushima, Shimanouchi, Miyazawa, Ichishima, Kuratani, Nakagawa, and Shido, J. Chem. Phys., 1953, 21, 815.

Zahn, Physikal. Z., 1932, 33, 686.

⁴ Zahn, Physikal. Z., 1932, 33, 080.
⁵ Martin and Partington, J., 1936, 158.
⁶ Koehl and Wenzke, J. Amer. Chem. Soc., 1937, 59, 1418.
⁷ Nakagawa, Nippon Kagaku Zasshi, 1958, 79, 1358.
⁸ Coomber and Partington, Nature, 1937, 139, 510; J., 1938, 1444.
⁹ Hurdis and Smyth, J. Amer. Chem. Soc., 1943, 65, 89.
¹⁰ Wolf and Lederle, Physikal. Z., 1928, 29, 948; Wolf, Z. phys. Chem., 1929, B, 2, 39.
¹¹ Wolf and Gross, Z. phys. Chem., 1931, B, 14, 305.
¹² Phadke Gokhale. Phalnikar. and Bhide. J. Indian Chem. Soc., 1945, 22, 235.

¹² Phadke, Gokhale, Phalnikar, and Bhide, J. Indian Chem. Soc., 1945, 22, 235.

Estok and Sikes, *J. Amer. Chem. Soc.*, 1953, 75, 2745.
 Bellamy and Williams, *J.*, 1957, 4294.
 Bellamy and Williams, *J.*, 1958, 3465.
 Linix Control Chem. Soc.

 ¹⁶ Josien, Castinel, Chiurdoglu, and Vanlanduyt, *Compt. rend.*, 1957, **244**, 2383.
 ¹⁷ Mizushima, "Structure of Molecules and Internal Rotation," Academic Press Inc., New York, 1954, pp. 73-74.

environment. Our procedure is to calculate, by addition of component bond and group parameters, the theoretical dipole moments and polarisability ellipsoid specifications, and thence the molar Kerr constants for various possible conformations, and to compare the values thus predicted with those obtained by experiment. The computational procedures are outlined in ref. 18, pp. 2483-2486. Bond and group polarisability semi-axes * used in the subsequent calculations are:

	$b_{\mathbf{L}}$	$b_{\mathbf{T}}$	$b_{\mathbf{V}}$	Ref.		b_{L}	$b_{\mathbf{T}}$	$b_{\mathbf{v}}$	Ref.
С-н	0.064	0.064	0.064	1	CCl	0.318	0.220	0.220	1
С-С	0.099	0.027	0.027	19	C–Br	0.465	0.308	0.308	. 1
С=О	0.230	0.140	0.046	20					

The component bond and group polarities were calculated from the following experimental values: μ (acetone) = 2.74 D,²¹ μ (methyl chloride) = 1.72 D,²² μ (methyl bromide) = 1.70 p, 2^2 all of which had been measured in carbon tetrachloride solution. The bond angles about the trigonal carbon atom are assumed to be 120°; all other bond angles are taken as tetrahedral. The calculations are summarised in Tables 3 and 4 for chloroacetone and bromoacetone, respectively. The principal axes are located in each case within the coordinate system XYZ (see III) where X and Y lie in the plane of the trigonal carbon valencies; Z is normal to this plane.

The direction of action of μ (corrected) cannot be ascertained with certainty. It has been assumed in calculating the molar Kerr constants of Tables 3 and 4 that the location of μ (corrected) is in each case the same as that derived (from the vector addition of component bond moments) for the corresponding μ (uncorrected). This introduces no significant error for conformations defined by $90^\circ < \phi < 180^\circ$; there could, however, be an appreciable error in the estimated molar constant for the *cis*-halogen-oxygen form. We calculate that an uncertainty of $+5^{\circ}$ in the location of μ (corrected) for each isomer $(\phi = 0)$ results in a maximum error in the _mK calc. of $\pm 15 \times 10^{-12}$ for chloroacetone (6%) and $\pm 22 \times 10^{-12}$ for bromoacetone (8%).

If these molecules exist as an equilibrium mixture of planar (apart from the hydrogens)

* Polarisability semi-axes of bonds or groups, b_L , b_T , and b_V , or of molecules, b_1 , b_2 , and b_3 , are quoted throughout in 10⁻²³ c.c. units.

¹⁸ Le Fèvre and Le Fèvre, Ch. XXXVI in "Physical Methods of Organic Chemistry," ed. Weiss-¹⁹ Le Fèvre and Le Fèvre, G., XXXVI III – Fiysical Methods
¹⁹ Le Fèvre and Le Fèvre, J., 1956, 3549.
²⁰ Le Fèvre, Le Fèvre, and Rao, J., 1959, 2340.
²¹ Le Fèvre and Le Fèvre, J., 1953, 4041.
²² Le Fèvre and Le Fèvre, J., 1954, 1577,

TABLE 3.

Polarisabilities, dipole moments, and molar Kerr constants calculated for conformations of chloroacetone.

		Dire	ction cosines v	with			
φ°	$b_{\mathbf{i}}$	X	\widehat{Y}	Z	μ	μ (corr.) *	$10^{12}(_{\rm m}K)$ †
0 {	$\begin{array}{l} b_1 = 0.852 \\ b_2 = 0.948 \\ b_3 = 0.640 \end{array}$	$^{+0.967}_{-0.254}$	$^{+0\cdot254}_{+0\cdot967}$	$\begin{smallmatrix} 0\\0\\+1\end{smallmatrix}$	4·0 ₇	3 ·5	$+238\pm15$
120 {		$^{+0.825}_{+0.549}_{+0.136}$	$-0.566 \\ +0.804 \\ +0.182$	$-0.010 \\ -0.227 \\ +0.974$	$2 \cdot 2_4$	$2 \cdot 0$	-24
130 {	$b_1 = 0.842 b_2 = 0.918 b_3 = 0.680$	$+ \begin{array}{r} 0.869 \\ + \begin{array}{r} 0.484 \\ + \begin{array}{r} 0.103 \end{array}$	$-0.495 \\ +0.849 \\ +0.184$	$^{+0\cdot001}_{-0\cdot211}_{+0\cdot977}$	$1 \cdot 9_8$	1.8	-18
$140 \left\{ \left. \left. \right. \right. \right\} \right\}$		$+ \frac{0.897}{+ 0.436} + 0.077$	-0.443 + 0.881 + 0.165	$+0.004 \\ -0.182 \\ +0.983$	1.7_{3}	1.6	-9
$150 \left\{ {} \right.$	$\begin{array}{l} b_1 = 0.842 \\ b_2 = 0.942 \\ b_3 = 0.656 \end{array}$	+ 0.913 + 0.404 + 0.054	-0.408 + 0.903 + 0.133	$^{+0.005}_{-0.143}_{+0.990}$	1.4,	1.4	+4
180 {	$\begin{array}{l} b_1 = 0.843 \\ b_2 = 0.958 \\ b_3 = 0.640 \end{array}$	$^{+0.930}_{-0.367}$	$-{0.367 \atop + 0.930 \atop 0}$	$\begin{array}{c}0\\0\\+1\end{array}$	1·0 ₉	1.1	+28

* Corrected for induction effects, estimates of which have been made for various conformations of chloroacetone by Mizushima *et al.*, ref. 3, p. 817. \dagger Calculated from μ (corrected) in each case.

Т	ABLE	4.

Polarisabilities, dipole moments, and molar Kerr constants calculated for conformations of bromoacetone.

		Dire	ction cosines v	with			
ϕ°	$b_{\mathbf{i}}$	X	Ŷ	Z	μ	μ corr.*	$10^{12}(_{\rm m}K)$ †
0 {	$b_1 = 0.940$ $b_2 = 1.095$ $b_3 = 0.728$	$^{+0.958}_{-0.288}$	$^{+0.288}_{+0.958}$	$0 \\ 0 \\ +1$	4·0 ₅	$3 \cdot 4_{5}$	$+281\pm22$
$120 \left\{ {} \right.$	$\begin{array}{l} b_1 = 0.930 \\ b_2 = 1.029 \\ b_3 = 0.804 \end{array}$	$^{+0.817}_{+0.536}_{+0.212}$	$-0.576 \\ +0.767 \\ +0.282$	$- \begin{array}{c} 0.011 \\ - \ 0.353 \\ + \ 0.936 \end{array}$	$2 \cdot 2_4$	2.0	-36
130 {	$b_1 = 0.930$ $b_2 = 1.049$ $b_3 = 0.784$	$^{+0.869}_{+0.470}_{+0.153}$	-0.494 + 0.826 + 0.270	$^{+0.001}_{-0.310}_{+0.951}$	1.98	1.8	-27
$150 \bigg\{$	$\begin{array}{l} b_1 = \ 0.942 \\ b_2 = \ 1.077 \\ b_3 = \ 0.745 \end{array}$	+ 0.920 + 0.354 + 0.170	-0.315 + 0.924 - 0.219	$- \begin{array}{r} 0.235 \\ + \begin{array}{r} 0.148 \\ + \begin{array}{r} 0.961 \end{array}$	1·50	1.4	+31
180 {	$b_1 = 0.931$ $b_2 = 1.105$ $b_3 = 0.728$	$^{+0.933}_{-0.359}$	$-{0.359 \atop + 0.933 \atop 0}$	$\begin{smallmatrix}&0\\&0\\+1\end{smallmatrix}$	$1 \cdot 1_1$	1.1	+36

* Estimated by assuming that μ (induced) for bromoacetone $\sim \mu$ (induced) for corresponding conformation of chloroacetone. \dagger Calculated from μ (corrected) in each case.

cis- and non-planar *gauche* forms, then the following proportions yield resultant calculated values in best agreement with experiment.

	% cis	% gauche	μ (calc.) D	μ (obs.) D	$10^{12}(_{\rm m}K)$ (calc.)	$10^{12}(_{\rm m}K)$ (obs.)
Chloroacetone	21	$79 \ (\phi = 130^{\circ})$	$2 \cdot 27$	$2 \cdot 27$	+36	+36
Bromoacetone	16	$84 (\phi = 120)$	$2 \cdot 29$	$2 \cdot 29$	+15	+14

We thus conclude that both substances are present in carbon tetrachloride solution mainly as the gauche form; the ratio gauche: cis equals ca. 4 for chloroacetone and ca. 5 for bromoacetone. The gauche conformation of chloroacetone is defined by $\phi = ca$. 130° and for bromoacetone by $\phi = ca$. 120°; the latter, smaller, value reflects the greater steric repulsion between the bromine atom and the methyl group.

Acetyl Chloride and Chloroacetyl Chloride.—From the molecular geometry of acetyl chloride (ref. 23, M 126) and the component bond moments, we obtain a calculated resultant moment of 2.34 D [directed as shown in (IV)] in fair accord with that from experiment (2.48 D). In the subsequent calculations we assume that μ (observed) for this molecule is similarly located. Utilisation of the bond and group semi-axes listed earlier to predict the anisotropy of polarisability and thence the molar Kerr constant of acetyl chloride, leads to values considerably in excess of those found from experiment. We note also that analogous calculations for chloroacetyl chloride, which are based on these bond polarisabilities, cannot be reconciled with observation. We conclude, therefore, that our original C-C, C=O, and C-Cl bond parameters (which were derived respectively from cyclohexane, acetone, and methyl chloride) are not applicable within the group C•CO•Cl. Alternatively, if we assume that $b_1 = b_2 > b_3$ [= b_{zz} in (IV)] for acetyl chloride (the polarisability ellipsoid for this molecule must reasonably have a very low degree of anisotropy in view of the large dipole moment yet very small molar Kerr constant) then the usual equations ¹ for $_{\infty}(_{m}K_{2})$ and $_{\rm E}P$ (= 15.8 c.c. from addition of the bond and group values of Le Fèvre and Steel ²⁴) can be solved (taking $_{D}P$ as $1 \cdot 1_{E}P$) to give: $b_1 = b_2 = 0 \cdot 63_2$; $b_3 = 0 \cdot 61_3$.

The ellipsoid of polarisability for any conformation of chloroacetyl chloride can now be specified by addition of the polarisabilities of the component groups H₂C•CO•Cl (obtained

by subtracting one C-H bond equivalent from the semi-axes of acetyl chloride) and C-Cl (for which $b_{\rm L} = 0.318$; $b_{\rm T} = b_{\rm V} = 0.220$). Two isomers have been considered: the *cis*-chlorine-oxygen form for which $\phi = 0^{\circ}$ and the *gauche* form described by $\phi = 120^{\circ}$. Stable conformations having $\phi > 120^{\circ}$ are unlikely, because of chlorine/chlorine interactions. The calculated polarisabilities are listed in Table 5; the reference axes XYZ are as shown in (V). The bond angle C-C-Cl was taken as 110°.

TABLE 5.

Calculated molecular polarisabilities and molar Kerr constants for conformations of chloroacetyl chloride.

Direction cosines with

			······································		
φ°	b_{i}	' X	Y	Z	$10^{12}(_{\rm m}K)$
ſ	$b_1 = 0.788$	+0.940	+0.342	0	
0 {	$b_{2} = 0.886$	-0.342	+0.940	0	-9 to $+16$
l	$b_{3} = 0.769$	0	0	+1	
ſ	$b_1 = 0.788$	+0.809	-0.588	+0.001	
$120 \ $	$b_{2} = 0.781$	+0.442	+0.611	+0.657	ca23
l	$b_{3} = 0.874$	-0.387	-0.531	-0.754	

For the *cis*-isomer the C–Cl dipoles are antiparallel (see ref. 23, M 123) so that μ (resultant) must act roughly along the carbon-oxygen bond direction. The predicted molar Kerr constant is given in Table 5 as a range of possible values calculated on the basis that a moment of 2.2 D (= μ observed) is located within an arc +10° from the C=O bond axis and in the XY plane. Vector addition of the component bond moments leads to a calculated resultant moment of $2\cdot 3 \text{ D}$ for the gauche form, which in turn results in a calculated molar Kerr constant of -23×10^{-12} . Unfortunately, the calculated molar Kerr constants are relatively insensitive to changes in ϕ so that it is not possible (in view of our assumptions underlying the derivation of the polarisability semi-axes of the H_oC·CO·Cl group) to differentiate between the isomers. It can, however, be reasonably concluded from the negativity of the observed molar Kerr constant (-17.3×10^{-12}) that the *cis*-form cannot be present alone (cf. ref. 15, p. 3466, where it is shown from spectroscopic evidence that both isomers of chloroacetyl chloride are present in carbon tetrachloride solution with the *cis*-conformation predominating).

²³ Sutton et al., "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Special Publ., No. 11, 1958.
²⁴ Le Fèvre and Steel, Chem. and Ind., 1961, 670.

Propionaldehyde and Ethyl Methyl Ketone.—Polarisability semi-axes and molar Kerr constants predicted for various conformations of each of these molecules are listed in Tables 6 and 7. We assume throughout that the molecular dipole moment is directed along the carbonyl group axis; that the bond angles about the sp^2 carbon atom are 120°; and that all other bond angles are tetrahedral. The X, Y, and Z directions are analogous to those described in (III).

TABLE 6. Polarisabilities and molar Kerr constants calculated for conformations of propionaldehyde.

		Dire	ction cosines	with	
ϕ°	$b_{\mathbf{i}}$	X	Ŷ	Z	$10^{12}(_{\rm m}K)$
0	$\begin{cases} b_1 = 0.674 \\ b_2 = 0.716 \\ b_3 = 0.484 \end{cases}$	$^{+0.912}_{+0.410}_{0}$	-0.410 + 0.912 = 0	$0 \\ 0 \\ +1$	+103
90	$\left\{ \begin{array}{l} b_1 = 0.708 \\ b_2 = 0.622 \\ b_3 = 0.543 \end{array} \right.$	$+ \frac{0.844}{-0.504} + 0.184$	+0.523 + 0.849 - 0.070	$- \begin{array}{c} 0.121 \\ + 0.156 \\ + 0.980 \end{array}$	+70
120	$\left\{ \begin{array}{l} b_1 = 0.728 \\ b_2 = 0.620 \\ b_3 = 0.525 \end{array} \right.$	$^{+0.752}_{-0.656}_{+0.071}$	+0.638 + 0.750 + 0.173	$-0.167 \\ -0.085 \\ +0.982$	+96
150	$\left\{ \begin{array}{l} b_1 = 0.628 \\ b_2 = 0.750 \\ b_3 = 0.496 \end{array} \right.$	+ 0.753 + 0.658 + 0.020	-0.654 + 0.744 + 0.133	$+ 0.073 \\ - 0.113 \\ + 0.991$	+131
180	$\left\{\begin{array}{l} b_1 = 0.631 \\ b_2 = 0.759 \\ b_3 = 0.484 \end{array}\right.$	$^{+0.781}_{-0.624}$	-0.624 + 0.781 = 0	$0\\0\\+1$	+148

TABLE 7.

Polarisabilities and molar Kerr constants calculated for conformations of ethyl methyl ketone.

		Direction cosines with					
ϕ°	$b_{\mathbf{i}}$	X	Ŷ	\overline{z}	$10^{12}(_{\rm m}K)$		
0	$\left\{ \begin{array}{l} b_1 = 0.851 \\ b_2 = 0.922 \\ b_3 = 0.639 \end{array} \right.$	$^{+0.975}_{-0.221}_{0}$	$^{+0.221}_{+0.975}$	$\begin{smallmatrix}&0\\&0\\+1\end{smallmatrix}$	+126		
90	$\left\{ \begin{array}{l} b_1 = 0.848 \\ b_2 = 0.864 \\ b_3 = 0.699 \end{array} \right.$	$^{+0\cdot632}_{+0\cdot761}_{+0\cdot148}$	-0.768 + 0.640 - 0.007	-0.100 - 0.109 + 0.989	+78		
120	$\left\{ \begin{array}{l} b_1 = 0.841 \\ b_2 = 0.889 \\ b_3 = 0.681 \end{array} \right.$	$^{+0.831}_{+0.548}_{+0.100}$	-0.557 + 0.820 + 0.133	$-0.009 \\ -0.166 \\ +0.986$	+108		
150	$\left\{ \begin{array}{l} b_1 = 0.841 \\ b_2 = 0.919 \\ b_3 = 0.652 \end{array} \right.$	+ 0.910 + 0.411 + 0.043	$- \frac{0.413}{+ 0.904} + 0.105$	$+0.005 \\ -0.113 \\ +0.994$	+151		
180	$\left\{ \begin{array}{l} b_1 = 0.842 \\ b_2 = 0.931 \\ b_3 = 0.639 \end{array} \right.$	$^{+0.927}_{+0.374}$	$- \begin{array}{c} - 0.374 \\ + \ 0.927 \\ 0 \end{array}$	$\begin{smallmatrix}&0\\&0\\+1\end{smallmatrix}$	+171		

The observed molar Kerr constants are $+64.4 \times 10^{-12}$ (for propionaldehyde) and $+88.2 \times 10^{-12}$ (for ethyl methyl ketone) in reasonable agreement with the values predicted for conformations having $\phi = ca$. 90° and ca. 100°, respectively (cf. diethyl ketone ²⁵ for which $\phi = ca$. 100°). The presence of rotational isomers other than these is not strictly precluded, we infer, however, that these molecules in carbon tetrachloride solution exist mainly as a *gauche* type conformer in which the C-C-Me plane is approximately perpendicular to that of the trigonal carbon valencies.

We acknowledge with gratitude the award of a Sydney University Research Studentship to A. N. S.

UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA.

[Received, March 6th, 1964.]

²⁵ Aroney, Izsak, and Le Fèvre, *J.*, 1961, 4148.